
SPDO: High-Throughput Road Distance
Computations on Spark Using Distance Oracles

ICDE 2016

Shangfu Peng

shangfu@cs.umd.edu
University of Maryland

Spatial Tek LLC

Jagan Sankaranarayanan Hanan Samet

jagan@nec-labs.com
NEC Labs America

hjs@cs.umd.edu
University of Maryland

Spatial Tek LLC

What do we do?
Motivation: Need to compute millions of
network distances or trip times per second
on a road network

Motivation: Need to compute millions of
network distances or trip times per second
on a road network

Who needs such computations?

1,000 locations

1 Million Network Distance Computations

Delivery companies compute Origin-
Destination (OD) matrices that can quickly
require million distance computations

Delivery companies compute Origin-
Destination (OD) matrices that can quickly
require million distance computations

1
,0

0
0

 lo
ca

ti
o

n
s

Uber has 35,000 taxis in NYC and
need to process customer requests,
analyze GPS track etc.

Uber has 35,000 taxis in NYC and
need to process customer requests,
analyze GPS track etc.

Local Advertisement companies need to
serve ads to people that are both proximal
and can reach the customer business, need
to do that at say 10K impressions a second!

State Smart Transportation Initiative (SSTI*) Example
*source: http://www.ssti.us/Events/accessibility-towards-a-new-multimodal-system-performance-metric/

Large-scale analysis such as count
how many jobs are accessible within
40 minutes of each census block

Motivation – lookup based

Database Database

Spatial
Datasets
Spatial

Datasets

Analytical Queries

SQL

Road Network is
Folded into a

relational table

 Scan based methods is popular, but not good enough

 Contraction Hierarchies(CH)

 Transit Node Routing (TNR)

 Customizable Route Planning (CRP)

 Lookup based methods, built for a relational database system

 Naive way, precompute all pairs result

 24M vertices in USA road network

 At least 6286TB for storage

 Hub Labeling → HLDB (Microsoft)

 𝛜-Distance Oracle

 SILC

 Previous research has shown that lookup

 based methods achieve a much higher

 throughput performance

Motivation – distributed key-value store
 High throughput → Distributed system

 Lookup based methods → Key-value data structure → hash access

 We need to adapt distance oracles for distributed architecture
 Test on RDBMS shows that we cannot scale more than 60K queries/per core

 Need to scale to even higher throughputs, using Apache Spark

IndexedRDD

Queries

Workload Partition

Gateway Machine

Graph and datasets are copied M times

Task
Machine 2

Algorithm

Datasets

… …

Queries

Master

Spark Cluster

Graph

Task
Machine M

Algorithm

Datasets

Graph
DISTANCE ORACLE

Loaded in distributed memory

(a) Existing distributed solution (b) SPDO

Task
Machine 1

Algorithm

Datasets

Graph

Method - 𝝐-Distance Oracle (𝝐-DO)

 A compression representation of road network distances

 Well-separated pair decomposition (WSPD) on a road network

 Can represent the distance between any two points in A and B
by one value with an epsilon error tolerance, e.g., 0.25, 0.1, 0.05

 𝑂

𝑛

𝜖2 well-separated pairs, each well-separated pair can be

represented as a key-value pair

 Key is the pair of two vertex sets, A and B

 Value is 𝑑𝐺(𝑝𝐴, 𝑝𝐵)

A B 𝑝𝐴
𝑝𝐵 … …

𝑑𝑢𝑚𝑏𝑏𝑒𝑙𝑙 structure

Method - DO-Tree

 Top-down decomposition on the whole space, (𝑆, 𝑆)

 PR-Quadtree, Morton code representation

 (𝑆, 𝑆) => (0, 0)

0

2 3

0 1 10 11

8 9

14 15

12 13

2 3

0 1

6 7

4 5

Depth 0

Depth 1

Depth 2

2-dimensional Morton code

(0, 0)

(𝟎, 0) (𝟑, 𝟑)

16 branches

Depth 1

Depth 2

MAX Depth 𝐷

… … Depth 3

(𝟎,𝟏) … …

… …
(𝒔𝒊, 𝒕𝒋−𝟏) (𝒔𝒊, 𝒕𝒋) (𝒔𝒊, 𝒕𝒋+𝟏)

4-dimensional DO-tree

Method - DO-Tree

 DO-tree = the top-down WSPD

 Each leaf node of DO-tree is a well-separated pair

 Uniqueness Property: For any source-target query (𝑠, 𝑡),
there is exactly one leaf node of the DO-tree, i.e., WSP that
contains both 𝑠 and 𝑡.

 Task: for any query (𝑠, 𝑡), finding the exact one WSP that
contains 𝑠, 𝑡 by hash access, then returning the distance
result

(0, 0)

(𝟎, 0) (𝟑, 𝟑)

16 branches

Depth 1

Depth 2

MAX Depth 𝐷

… … Depth 3

(𝟎,𝟏) … …

… …
(𝒔𝒊, 𝒕𝒋−𝟏) (𝒔𝒊, 𝒕𝒋) (𝒔𝒊, 𝒕𝒋+𝟏)

Method - Hash Access for 𝝐-DO

 Basic idea (Basic)

 Hash Table 𝑯𝟏 = all leaf nodes (WSPs) of DO-tree

 Each query (𝑠, 𝑡) generates 𝑂(𝐷) keys, each key
corresponds one ancestor node of (𝑠, 𝑡)

 Exact one key exists in 𝑯𝟏 according to the uniqueness
property

Oracle
Part 1

Oracle
Part 2

Oracle
Part 𝑀

𝑵 s-t queries

𝑵 × 𝑫 keys

Master
Node

… …

Hash Partitioner

Node
1

Node
2

Node
𝑀

Hash Access

Result Collector

In-memory

… …
𝑀 Slaves

Nodes

Network
Communication Scatter Gather

Method - Hash Access for 𝝐-DO

 Binary search method (BS)

 Hash Table 𝑯𝟐 = all nodes of DO-tree, {𝑟𝑜𝑜𝑡, (𝐴, 𝐵), (𝐶, 𝐸)}

 For any query (𝑠, 𝑡), initial possible depth range is [1, D]

 Examining if the ancestor node of (𝑠, 𝑡) at depth 𝐷/2 exists
in 𝑯𝟐 or not

 Possible depth range becomes

 either [0, 𝐷/2) or [𝐷/2, D]

WSP

(𝑨, 𝑩)

root

Existent

Inexistent

(𝑪, 𝑬)

(𝒔, 𝒕)

(𝑭, 𝑮)

Depth 1

Depth 2

MAX Depth 𝐷

Depth 3

Depth 4

Method - Hash Access for 𝝐-DO

 Binary search method (BS)

 Hash Table 𝑯𝟐 = all nodes of DO-tree, {𝑟𝑜𝑜𝑡, (𝐴, 𝐵), (𝐶, 𝐸)}

 Note that O(log 𝐷) = 𝑂(log log 𝑛)

 Wise Partitioning method (WP)

 Adding spatial partitioning

 of all nodes, push 𝑂(log 𝐷)

 hash lookups in Slaves

AFOracle
Part 1

AFOracle
Part 2

AFOracle
Part 𝑀

𝑵 s-t queries

𝑵 keys

Master
Node

𝑀 Slaves
Nodes

… …

Hash Partitioner

Node
1

Node
2

Node
𝑀

Hash Access

Result Collector

In-memory

Finish 𝐥𝐨𝐠 𝑫
iterations

Less than
𝐥𝐨𝐠 𝑫

iterations

… …

Network
Communication Scatter Gather

Evaluation – time complexity
 Time complexity analysis

 Master, Slave, and network communications

 𝑁 source-target queries, 𝑀 slaves, 𝐷 depths of DO-tree

Design Iteration
Master
Time

Slave
Time

Network
Communication

Basic 1 𝑂(𝑁 ⋅ 𝐷) 𝑂
𝑁 ⋅ 𝐷

𝑀
 𝑂(𝑁 ⋅ 𝐷)

BS log 𝐷 𝑂(𝑁 ⋅ log 𝐷) 𝑂
𝑁 ⋅ log 𝐷

𝑀

𝑂(𝑁 ⋅ log 𝐷)

WP 1 𝑂(𝑁)
Random 𝑂

𝑁⋅log 𝐷

𝑀

𝑂(𝑁)
Worst 𝑂 𝑁 ⋅ log 𝐷

Evaluation - throughput
 Comparisons

 Dijkstra’s algorithm (Dijkstra), good for one-to-many pattern

 Contraction hierarchies (CH)

 Distance Oracle embedded in PostgreSQL (DO)

• NYC road network
• 264K vertices, 733K edges
• One local server, single-thread

• USA road network
• 24M vertices, 58M edges
• 20 machines cluster, single-thread

Method Basic BS WP DO CH Dijkstra

Dist/sec/machine 5.0K 25.0K 73.8K 18.8K 385 1.6

Throughput the USA road network

Evaluation - applications
 Nearby job opportunities, one-to-many pattern

 Actual drive distance from residence to workplace

Nearby job opportunities (e.g., within 10

kms) for each census block in the Bay Area,

requiring 120 million distance computations

Average drive distance from residence to

workplace for California residents, requiring

13.6 million distance computations

One-to-many pattern (2 mins with 1 machine)
One-to-one pattern

(13 secs vs. 20 mins in CH with 5 machines)

Evaluation - applications
 Route Directness Index (RDI) of two locations

 Ratio of the network distance to the Euclidean distance

 Define Route Directness Spectrum (RDS) of a spatial region

 The collection of RDIs between all pairs of vertices in a road
network

1 mins per city vs. 4 hours in CH with 1 machine

Conclusions
 SPDO is a high throughput distributed solution for shortest road

network distance/time computations using a distributed key-
value store on Apache Spark.

 Proposed 3 methods on Apache Spark, Basic, BS, and WP, which
are a scalable way of obtaining throughput performance that
exceeds one million computations per second with just a few
machines

 Reduce running time for GIS analysts/scientists, save developing
time for GIS developers, and simplify the system design and
reduce hardware cost for GIS architects

Thanks

