

DP-tree: Indexing Multi-Dimensional Data under Differential Privacy*

Shangfu Peng, Yin Yang, Zhenjie Zhang, Xiaokui Xiao, Marianne Winslett and Yong Yu

Introduction

GOAL: count the number of records in a multi-dimensional range as accurately as possible while satisfying ε -differential privacy.

Range Count Query

A range count query returns the number of records in a multidimensional range.

Patient	Age	Systolic (mmHg)	Diastotic (mmHg)	
Alice	45	140	95	select count(*) from Patients
Bob	59	120	80	where Age \geq 50 and age \leq 60
Carol	52	130	90	and systolic≥120
Dave	57	135	90	

Existing Methods

Privlet is the first index structure for answering 1D range count queries under ϵ -DP using Haar wavelet transform.

Universal histogram (UH) is a tree structure over a 1D domain, with a post-processing method for enforcing consistency and improving accuracy.

DP-compliant quad-tree (Quad) is a 2D structure based on the quad-tree. Quad assigns a portion of the privacy budget to each level of the tree, and computes the optimal budget assignment.

Method	Asymptotic error bound	Practical accuracy performance		
Laplace Mechanism	$O(n^d / \varepsilon^2)$	Poor		
Privlet	$O(\log^{3d} n \ / \ \varepsilon^2)$	Poor		
UH	$O(\log^3 n / \varepsilon^2)$ (limited to 1D data)	Good (with optimal fanout)		
Quad	$O(n / \varepsilon^2)$ (limited to 2D data)	Good		
DP-tree	$O(\log^{3d} n \ / \ \varepsilon^2)$	Very good		

Summary of range count algorithms under *e*-DP

*This work is supported by TSRP Grant No. 1021580074 from Singapore's A*STAR.

1D 2D

> 30 10 20 9 4 21

Theorem. (Multi-Dimensional Consistency Enforcement) the optimal consistent DP-tree can be computed using the consistency enforcement method for 1D data.

Domain Size	2 ⁶	2 ¹²	2 ¹⁸	2 ²⁴	2 ³⁰	2 ³⁶	2 ⁴²		
Optimal	12	12	13	13	14	14	15		
• 2 is a very poor choice for the fanout although it is used in									

- many papers.

optimize the following:

Subject to: ε_{i}

Consistency enforcement: With node-wise budget assignment, solve the consistency enforcement problem in O(n) time:

Mi

Optimization

Fanout Analysis

Goal: minimize expected error for a random range query q.

very poor choice for the fatiout although it is used in

• In practice, one can get good accuracy with a fanout of 8 for small domains, and a fanout of 16 for larger domains.

Adaptive DP-tree

Adaptive privacy budget assignment: extract from past workload statistics the visit frequency r_i for each node N_i . Then

$$\begin{aligned} \text{Ainimize } E[Err(Q)] &\propto \sum_{i=1}^{m} \frac{r_i}{\varepsilon_i^2} \\ \varepsilon_i > 0; \qquad \forall \ l \in leaves, \sum_{v \in ancestor(l)} \varepsilon_v = \varepsilon \end{aligned}$$

inimize
$$\sum_{v} \varepsilon_{v}^{2} (\bar{h}[v] - \tilde{h}[v])^{2}$$

Experimental Results