MARYLAND

Simplification and Refinement for Speedy Spatiotemporal Hot Spot Detection Using Spark

Shangfu Peng

Hong Wei

Hao Li

Hanan Samet

{shangfu, hyw, haoli, hjs}@cs.umd.edu University of Maryland

SIGSPATIAL 2016

Problems

 \Box Identify the top-k spatio-temporal hot spot cells

Dataset:

Drop-off locations in New York City Yellow Cab taxi trip records in 2015.

Input:

- Arbitrary Granularity setting: Cell Size and Time Step Size
- \Box Getis-Ord G_i^* statistic:

$$G_{i}^{*} = \frac{\sum_{j=1}^{n} w_{i,j} x_{j} - \bar{X} \sum_{j=1}^{n} w_{i,j}}{S \sqrt{\frac{n \sum_{j=1}^{n} w_{i,j}^{2} - (\sum_{j=1}^{n} w_{i,j})^{2}}{n-1}}}$$

$$w_{i,j} = \begin{cases} 1, & \text{if } c_i \text{ and } c_j \text{ are neighbors} \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \sum_{j=1}^{n} w_{i,j} = 27, \forall i$$

$$\Rightarrow \text{ compute top-} k X_i = \sum_{j=1}^{27} x_{i,j}$$

Challenge

- □ A Spark cluster?
- □ Arbitrary fine granularity
 - Any solutions on a coarse granularity take negligible time compared to 18 secs
 - Cells with records are sparse in the cube space in a fine granularity setting
- Efficient partition strategy
 - Every cell needs the values of its neighbor cells, extra network cost
 - Avoid unnecessary shuffle: network communication cost during shuffle would become a significant bottleneck

Slave node A Slave node B Boundary cells

Solutions

□ BASIC solution Easy, but increased the network communication cost a lot

- Copy each valued cell 27 times
- Similar to a graph, each cell sends its value to its 27 neighbors

Only valued cell

Low communication solution B

- Partition cells by time dimension
- Build a HashMap table in each slave machine
- Compute X_i in each slave machine
- Recompute X_i for the boundary cells

Boundary cells

Time dimension

Solution – simplification and refinement (SR)

Simplification for speed up and *Refinement* for accuracy

Intuition for simplification

- Hot spot cells with the highest X_i usually have a large value $x_{i,j}, j \in [1,27]$
- Cells with small x_i can be thrown away as noise data
- Keep top K valued cells, e.g., K = 2,000,000 in our submission

The data follows the long-tail distribution

Solution – simplification and refinement (SR)

Solution – simplification and refinement (SR)

\Box Using any solution (BASIC) to compute X_i after simplification

Refinement

- Using simplification, the top-50 hot spot cells are not accurate
- Example: a cell that is supposed to rank between 45 to 50 now might fall behind 50 because some of its neighbors were thrown away in simplification
- Choose the *M* cells with greatest X_i , e.g., M = 500 in our submission,
- Recompute the exact X_i for the M cells and their neighbor cells

Performance

□ Number of drop-off records is 143M

□ Preparation (18 – 20 secs)

- Load all data and cache in memory
- Process string and timestamp data formats

□ Time performance (SR-2M-500 returns the same result)

Table 2: Runtime (seconds) without Preparation

Solution Setting	SR-2M-500	BASIC	SHIFT
0.1, seven days	≤ 1	≤ 1	5
0.001, seven days	25 - 26	23 - 28	40 - 45
0.001, one day	27 - 29	90 - 120	80 - 85
0.001, six hours	27 - 30	300 - 500	100 - 120
0.00001, six hours	30 - 33	≥ 2000	600 - 700

Table 1: # of Cells in Granularity Settings

Time Step Size Cell Size	seven days	one day	six hours
0.1 (10 km)	1275	-	-
0.001(100 meters)	1.93M	$6.45\mathrm{M}$	$13.59\mathrm{M}$
0.00001 (1 meter)	-	-	$141.75\mathrm{M}$

Conclusions

 \Box Hot spot cells are usually with large x_i or its neighbors with large x_i

- \Box Cells with small x_i can be thrown away as noise data
- Using simplification for speed up and refinement for improving accuracy
- □ Solving any given granularity setting within 50 secs
- Particularity of this problem (extensions)
 - Require a small number of hot spot cells, e.g., 50 hot spot cells
 - Definition of $w_{i,j}$, e.g., $w_{i,j} = 1$ only when *i* and *j* are neighbors
 - Definition of evaluation score, e.g., 2X time loses 16 in score

 $score = 100 * \left(\frac{2 * J(R, S) + (t_F/t_S)}{3}\right)$

